Frobenius Problem and the Covering Radius of a Lattice Lenny Fukshansky and Sinai Robins

نویسنده

  • LENNY FUKSHANSKY
چکیده

Let N ≥ 2 and let 1 < a1 < · · · < aN be relatively prime integers. Frobenius number of this N-tuple is defined to be the largest positive integer that cannot be expressed as ∑ N i=1 aixi where x1, ..., xN are non-negative integers. The condition that gcd(a1, ..., aN ) = 1 implies that such number exists. The general problem of determining the Frobenius number given N and a1, ..., aN is NP-hard, but there has been a number of different bounds on the Frobenius number produced by various authors. We use techniques from the geometry of numbers to produce a new bound, relating Frobenius number to the covering radius of the null-lattice of this N-tuple. Our bound is particularly interesting in the case when this lattice has equal successive minima, which, as we prove, happens infinitely often.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frobenius Problem and the Covering Radius of a Lattice

Let N ≥ 2 and let 1 < a1 < · · · < aN be relatively prime integers. Frobenius number of this N-tuple is defined to be the largest positive integer that cannot be expressed as P N i=1 aixi where x1, ..., xN are non-negative integers. The condition that gcd(a1 , ..., aN ) = 1 implies that such number exists. The general problem of determining the Frobenius number given N and a1, ..., aN is NP-har...

متن کامل

Bounds for solid angles of lattices of rank three

We find sharp absolute constants C1 and C2 with the following property: every well-rounded lattice of rank 3 in a Euclidean space has a minimal basis so that the solid angle spanned by these basis vectors lies in the interval [C1, C2]. In fact, we show that these absolute bounds hold for a larger class of lattices than just well-rounded, and the upper bound holds for all. We state a technical c...

متن کامل

Dynamic Hub Covering Problem with Flexible Covering Radius

Abstract One of the basic assumptions in hub covering problems is considering the covering radius as an exogenous parameter which cannot be controlled by the decision maker. Practically and in many real world cases with a negligible increase in costs, to increase the covering radii, it is possible to save the costs of establishing additional hub nodes. Change in problem parameters during the pl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007